128 research outputs found

    Micrometeorological measurements of methane flux at a boreal forest in central Alaska

    Get PDF
    Methane (CH_4) flux at a black spruce forest in central Alaska was determined by applying the three types of modified gradient method. One type used the eddy diffusivity obtained by CO_2 flux and CO_2 gradient. Others established the flux gradient relationship assuming Monin-Obukhov similarity. The wind speed and temperature profile functions were corrected for the influence of the roughness sublayer, and then applied to the modified gradient methods. More than 70% of the data were rejected by the strict quality control and a continental climate, such as calm wind. Although the diurnal variations of CH_4 flux by the three methods were different, the seasonal variation showed similar tendency; a weak emission on snowpack, an obvious emission around spring thaw, and CH_4 uptake in the late growing season. As calculated CH_4 flux was in the same range as with previous studies conducted by the chamber measurement

    Measurement of methane flux over an evergreen coniferous forest canopy using a relaxed eddy accumulation system with tuneable diode laser spectroscopy detection

    Get PDF
    Very few studies have conducted long-term observations of methane (CH4) flux over forest canopies. In this study, we continuously measured CH4 fluxes over an evergreen coniferous (Japanese cypress) forest canopy throughout 1 year, using a micrometeorological relaxed eddy accumulation (REA) system with tuneable diode laser spectroscopy (TDLS) detection. The Japanese cypress forest, which is a common forest type in warm-temperate Asian monsoon regions with a wet summer, switched seasonally between a sink and source of CH4 probably because of competition by methanogens and methanotrophs, which are both influenced by soil conditions (e.g., soil temperature and soil moisture). At hourly to daily timescales, the CH4 fluxes were sensitive to rainfall, probably because CH4 emission increased and/or absorption decreased during and after rainfall. The observed canopy-scale fluxes showed complex behaviours beyond those expected from previous plot-scale measurements and the CH4 fluxes changed from sink to source and vice versa

    Seasonal Variation in Fraction of Absorbed Photosynthetically Actic Radiation and Vegetation Properties in Burned Forests in Interior Alaska

    Get PDF
    Fraction of absorbed photosynthetically active radiation (FAPAR) is an important ecophysiological parameter for carbon and water exchange modeling. However, validation studies of FAPAR are scarce, especially for disturbance area. One study (Steinberg et al., 2006) revealed that the MODIS FAPAR product is overestimated for burned boreal forests. Wildfire is a major disturbance in boreal forest ecosystems, and it significantly influences carbon and water exchange processes. It is important to explicitly incorporate burned areas in estimating regional exchanges. This study aims to provide a validation data for FAPAR by collecting data regarding absorption of photosynthetically active radiation (PAR) in burned boreal forests. It also focuses on obtaining an empirical relationship to estimate seasonal and interannual variations in FAPAR from vegetation indices in the early stage of recovery after wildfire.This study was partly supported by Carbon Cycle Program of IARC/NSF and the IJIS (IARC/JAXA Information System)

    Methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique

    Get PDF
    Ecosystem-scale methane (CH4) exchange was observed in a poorly-drained black spruce forest over permafrost in interior Alaska during the snow-free seasons of 2011–2013, using the eddy covariance technique. The magnitude of average CH4 exchange differed depending on wind direction, reflecting spatial variation in soil moisture condition around the observation tower, due to elevation change within the small catchment. In the drier upper position, the seasonal variation in CH4 emission was explained by the variation in soil water content only. In the wetter bottom, however, in addition to soil temperature and soil water content, seasonal thaw depth of frozen soil was also an important variable explaining the seasonal variation in CH4 exchange for this ecosystem. Total snow-free season (day of year 134–280) CH4 exchanges were 12.0 ± 1.0, 19.6 ± 3.0, and 36.6 ± 4.4 mmol m−2 season−1 for the drier upper position, moderately wet area, and wetter bottom of the catchment, respectively. Observed total season CH4 emission was nearly one order smaller than those reported in other northern wetlands, due probably to the relatively low ground water level and low soil temperature. The interannual variation of total snow-free season CH4 emission in the wetter bottom of the catchment was influenced by the amount of rainfall and thaw depth. On the other hand, in the drier upper position the amount of rainfall did not strongly affect the total season CH4 emission. Different responses of CH4 exchange to environmental conditions, depending on the position of a small catchment, should be considered when estimating the spatial variation in CH4 exchange accurately in ecosystems over permafrost.ArticleAGRICULTURAL AND FOREST METEOROLOGY. 214(0):157-168 (2015)journal articl

    Permafrost Landscape History Shapes Fluvial Chemistry, Ecosystem Carbon Balance, and Potential Trajectories of Future Change

    Get PDF
    Intensifying permafrost thaw alters carbon cycling by mobilizing large amounts of terrestrial substrate into aquatic ecosystems. Yet, few studies have measured aquatic carbon fluxes and constrained drivers of ecosystem carbon balance across heterogeneous Arctic landscapes. Here, we characterized hydrochemical and landscape controls on fluvial carbon cycling, quantified fluvial carbon fluxes, and estimated fluvial contributions to ecosystem carbon balance across 33 watersheds in four ecoregions in the continuous permafrost zone of the western Canadian Arctic: unglaciated uplands, ice-rich moraine, and organic-rich lowlands and till plains. Major ions, stable isotopes, and carbon speciation and fluxes revealed patterns in carbon cycling across ecoregions defined by terrain relief and accumulation of organics. In previously unglaciated mountainous watersheds, bicarbonate dominated carbon export (70% of total) due to chemical weathering of bedrock. In lowland watersheds, where soil organic carbon stores were largest, lateral transport of dissolved organic carbon (50%) and efflux of biotic CO2 (25%) dominated. In watersheds affected by thaw-induced mass wasting, erosion of ice-rich tills enhanced chemical weathering and increased particulate carbon fluxes by two orders of magnitude. From an ecosystem carbon balance perspective, fluvial carbon export in watersheds not affected by thaw-induced wasting was, on average, equivalent to 6%–16% of estimated net ecosystem exchange (NEE). In watersheds affected by thaw-induced wasting, fluvial carbon export approached 60% of NEE. Because future intensification of thermokarst activity will amplify fluvial carbon export, determining the fate of carbon across diverse northern landscapes is a priority for constraining trajectories of permafrost region ecosystem carbon balance

    Genotype determination of the OPN1LW/OPN1MW genes: novel disease-causing mechanisms in Japanese patients with blue cone monochromacy

    Get PDF
    Blue cone monochromacy (BCM) is characterized by loss of function of both OPN1LW (the first) and OPN1MW (the downstream) genes on the X chromosome. The purpose of this study was to investigate the first and downstream genes in the OPN1LW/OPN1MW array in four unrelated Japanese males with BCM. In Case 1, only one gene was present. Abnormalities were found in the promoter, which had a mixed unique profile of first and downstream gene promoters and a −71A > C substitution. As the promoter was active in the reporter assay, the cause of BCM remains unclear. In Case 2, the same novel mutation, M273K, was present in exon 5 of both genes in a two-gene array. The mutant pigments showed no absorbance at any of the wavelengths tested, suggesting that the mutation causes pigment dysfunction. Case 3 had a large deletion including the locus control region and entire first gene. Case 4 also had a large deletion involving exons 2–6 of the first gene. As an intact LCR was present upstream and one apparently normal downstream gene was present, BCM in Case 4 was not ascribed solely to the deletion. The deletions in Cases 3 and 4 were considered to have been caused by non-homologous recombination

    Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data

    Get PDF
    The latitudinal gradient of the start of the growing season (SOS) and the end of the growing season (EOS) were quantified in Alaska (61°N to 71°N) using satellite-based and ground-based datasets. The Alaskan evergreen needleleaf forests are sparse and the understory vegetation has a substantial impact on the satellite signal. We evaluated SOS and EOS of understory and tundra vegetation using time-lapse camera images. From the comparison of three SOS algorithms for determining SOS from two satellite datasets (SPOT-VEGETATION and Terra-MODIS), we found that the satellite-based SOS timing was consistent with the leaf emergence of the forest understory and tundra vegetation. The ensemble average of SOS over all satellite algorithms can be used as a measure of spring leaf emergence for understory and tundra vegetation. In contrast, the relationship between the ground-based and satellite-based EOSs was not as strong as that of SOS both for boreal forest and tundra sites because of the large biases between those two EOSs (19 to 26 days). The satellite-based EOS was more relevant to snowfall events than the senescence of understory or tundra. The plant canopy radiative transfer simulation suggested that 84–86% of the NDVI seasonal amplitude could be a reasonable threshold for the EOS determination. The latitudinal gradients of SOS and EOS evaluated by the satellite and ground data were consistent and the satellite-derived SOS and EOS were 3.5 to 5.7 days degree− 1 and − 2.3 to − 2.7 days degree− 1, which corresponded to the spring (May) temperature sensitivity of − 2.5 to − 3.9 days °C− 1 in SOS and the autumn (August and September) temperature sensitivity of 3.0 to 4.6 days °C− 1 in EOS. This demonstrates the possible impact of phenology in spruce forest understory and tundra ecosystems in response to climate change in the warming Artic and sub-Arctic regions
    corecore